Abstract

Marginal distributions play a central role in statistical analysis of a contingency table. However, when the number of partition becomes large, the contribution from marginal distributions decreases. This paper focuses on a formal analysis of marginal distributions in a contingency table. The main approach is to take the difference between two matrices with the same sample size and the same marginal distributions, which we call difference matrix. The important nature of the difference matrix is that the determinant is equal to 0: when the rank of a matrix is r, the difference between an original matrix and the expected matrix become r - 1 at most. Since the sum of rows or columns become zero, which means that the information of one rank corresponds to information on the frequency of a contingency matrix. Interestingly, if we take an expected matrix whose elements are the expected values based on marginal distributions, the difference between an original matrix and expected matrix can be represented by linear combination of determinants of 2times2 submatrices

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.