Abstract

Existing methods for predicting lithium-ion (Li-ion) battery residual lifetime mostly depend on a priori knowledge on aging mechanism, the use of chemical or physical formulation and analytical battery models. This dependence is usually difficult to determine in practice, which restricts the application of these methods. In this study, we propose a new prediction method for Li-ion battery residual lifetime evaluation based on FPCA (functional principal component analysis) and Bayesian approach. The proposed method utilizes FPCA to construct a nonparametric degradation model for Li-ion battery, based on which the residual lifetime and the corresponding confidence interval can be evaluated. Furthermore, an empirical Bayes approach is utilized to achieve real-time updating of the degradation model and concurrently determine residual lifetime distribution. Based on Bayesian updating, a more accurate prediction result and a more precise confidence interval are obtained. Experiments are implemented based on data provided by the NASA Ames Prognostics Center of Excellence. Results confirm that the proposed prediction method performs well in real-time battery residual lifetime prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.