Abstract

Lithium-ion batteries have become widely used in many industries due to their outstanding performance, making it vital to accurately predict the remaining useful life (RUL) of these batteries. This will aid in developing energy allocation strategies and ensure the safe use of lithium batteries. To overcome the issue of inaccurate RUL prediction, a new method is proposed that leverages data preprocessing and a prior knowledge-assisted convolutional neural network-long short-term memory neural network (CNN-LSTM). This method utilizes capacity as the health factor and employs complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the capacity sequence, eliminating noise components through data reconstruction. The reconstructed capacity sequence data are then used to pretrain the CNN-LSTM neural network, forming a priori knowledge. Finally, real-time battery capacity data are used to train the prior knowledge-aided CNN-LSTM neural network for real-time RUL prediction of Lithium-ion batteries. The results show that this method significantly improves the RUL prediction accuracy and reduces the prediction error while being more robust than existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.