Abstract
For reliability-critical and expensive products, it is necessary to estimate their residual lives based on available information, such as the degradation data, so that proper maintenance actions can be arranged to reduce or even avoid the occurrence of failures. In this work, by assuming that the product-to-product variability of the degradation is characterized by a skew-normal distribution, a generalized Wiener process-based degradation model is developed. Following that, the issue of residual life (RL) estimation of the target product is addressed in detail. The proposed degradation model provides greater flexibility to capture a variety of degradation processes, since several commonly used Wiener process-based degradation models can be seen as special cases. Through the EM algorism, the population-based degradation information is used to estimate the parameters of the model. Whenever new degradation measurement information of the target product becomes available, the degradation model is first updated based on the Bayesian method. In this way, the RL of the target product can be estimated in an adaptive manner. Finally, the developed methodology is demonstrated by a simulation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.