Abstract

In some circumstances, the mechanical and optical properties of multiphase brittle materials strongly depend on the level of residual micromechanical stresses that arise upon cooling due to thermal and elastic mismatch between the constituent phases. Here we study the residual internal stress in a partially crystallized oxyfluoride glass, best known as photothermorefractive (PTR) glass. This material is composed of a glass matrix with embedded nanosize sodium fluoride (NaF) crystals. Using both the Selsing model and solid-state nuclear magnetic resonance in combination with first principles calculations we found that the crystals are under a tensile stress field of approximately 610–800MPa. For this stress level the estimated critical crystal diameter for spontaneous cracking is about 2300–1900nm, which greatly exceeds the observed diameters of 7–35nm. Hence no spontaneous cracking is expected for the PTR glasses. First principles calculations indicate that the stress induced change of the refractive index of the NaF crystals is about −0.08%, which agrees with the observed refractive index changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.