Abstract

Cadmium (Cd) is the family member of toxic heavy metals, and its accumulation in food crops has become a global environmental constraint. Biochar potentially minimizes the metal contents in plants, but limited work has been reported on its residual effect on subsequent crops. The residual effect of various biochar levels (0, 1.5, 3.0, and 5.0% w/w) on Cd accumulation in rice has been investigated in this study. Biochar treatments enhanced the rice growth, photosynthesis, and antioxidant enzymes, whereas diminished the Cd contents and oxidative stress in rice. Cadmium concentration in shoots decreased by 24.4, 36.6, and 57.5% in 1.5, 3.0, and 5.0% biochar treatments over the control. Biochar supply enhanced the soil pH and electrical conductivity, whereas diminished the soil bioavailable Cd. Overall, the results depicted a significant residual impact of rice straw biochar on rice growth attributes and Cd uptake. However, studies are still needed to explore the long-term sustainability of biochars prepared from different feedstocks on bioavailability of toxic metals in soils and uptake by food crops under field conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call