Abstract
New fluctuation properties arise in problems where both spatial integration and energy summation are necessary ingredients. The quintessential example is given by the short-range approximation to the first order ground state contribution of the residual Coulomb interaction. The dominant features come from the region near the boundary where there is an interplay between Friedel oscillations and fluctuations in the eigenstates. Quite naturally, the fluctuation scale is significantly enhanced for Neumann boundary conditions as compared to Dirichlet. Elements missing from random plane wave modeling of chaotic eigenstates lead surprisingly to significant errors, which can be corrected within a purely semiclassical approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.