Abstract

A study of residual compressive strength in delaminated laminates is presented. A methodology is proposed for simulating the whole compressive failure responses, such as initial buckling, postbuckling, contact of delamination front region, delamination propagation, fiber breakage, and matrix cracking etc. An finite element analysis (FEA) of the residual compressive strength is conducted on the basis of the Von Karman's nonlinearity assumption and the first-order shear deformation plate theory, combined with a stiffness degradation scheme. The numerical analysis models and methods are briefly introduced in this paper and some numerical examples are presented to illustrate it. From numerical results and discussion, it is clear that the compressive failure response involves complex multi-failure modes during compressive process. The method and numerical conclusions provide in this paper should of great value to engineers dealing with composite structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call