Abstract
Autocorrelations exist in real production extensively, and special statistical tools are needed for process monitoring. Residual charts based on autoregressive integrated moving average (ARIMA) models are typically used. However, ARIMA models need a quite amount of experience, which sometimes causes inconveniences in the implementation. With a good performance under less experience or even none, hidden Markov models (HMMs) were proposed. Since ARIMA models have many different performances in positive and negative autocorrelations, it is interesting and essential to study how HMMs affect the performances of residual charts in opposite autocorrelations, which has not been studied yet. Therefore, we extend HMMs to negatively auto-correlated observations. The cross-validation method is used to select the relatively optimal state number. The experiment results show that HMMs are more stable than Auto-Regressive of order one (AR(1) models) in both cases of positive and negative autocorrelations. For detecting abnormalities, the performance of HMMs approach is much better than AR(1) models under positive autocorrelations while under negative autocorrelations both methods have similar performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.