Abstract

Abstract We show that the residual categories of quadric surface bundles are equivalent to the (twisted) derived categories of some scheme under the following hypotheses. • Case 1: The quadric surface bundle has a smooth section. • Case 2: The total space of the quadric surface bundle is smooth and the base is a smooth surface. We provide two proofs in Case 1 describing the scheme as the hyperbolic reduction and as a subscheme of the relative Hilbert scheme of lines, respectively. In Case 2, the twisted scheme is obtained by performing birational transformations to the relative Hilbert scheme of lines. Finally, we apply the results to certain complete intersections of quadrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.