Abstract
The yields in bioconversion of residues produced in the Cameroon food industry to liquid and gaseous biofuels were evaluated and the potential of these residues as feedstock for renewable energy production in Cameroon were assessed. Residues generated after processing avocado, cocoa, and peanut crops were converted at laboratory-scale to second-generation gaseous biofuels (biogas) and liquid biofuels (ethanol). Mechanical (milling), thermal-chemical (steam-NaOH), and microwave pretreatments were applied before hydrolysis of biomass using cellulolytic enzymes. Cellulosic sugars production potential was also assessed. The energy conversion rate was higher when anaerobic digestion technology was applied to convert the tested biomass to methane. The total Cameroon potential under anaerobic digestion technology is over 330,000 m3, which represents 28% from oil consumption or 5.39% from electricity consumption when lignocellulosic ethanol technology was applied. The national potential was assessed up to 200,000 kg, representing 17% from oil consumption in transport or 3.19% from electricity consumption. Overall, the share of energy potential of the tested residual biomass is important when compared to fossil fuel consumption in Cameroon and represents an important potential feedstock for electricity production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.