Abstract

We develop an adaptive numerical method for solution of the non-stationary compressible Navier–Stokes equations. This method is based on the space–time discontinuous Galerkin discretization, which employs high polynomial approximation degrees with respect to the space as well as to the time coordinates. We focus on the identification of the computational errors, following from the space and time discretizations and from the inexact solution of the arising nonlinear algebraic systems. We derive the residual-based error estimates approximating these errors. Then we propose an efficient algorithm which brings the algebraic, spatial and temporal errors under control. The computational performance of the proposed method is demonstrated by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.