Abstract

This paper aims to provide a machine learning framework to simulate two-phase flow in porous media. The proposed algorithm is based on Physics-informed neural networks (PINN). A novel residual-based adaptive PINN is developed and compared with the residual-based adaptive refinement (RAR) method and with PINN with fixed collocation points. The proposed algorithm is expected to have great potential to be applied to different fields where adaptivity is needed. In this paper, we focus on the two-phase flow in porous media problem. We provide two numerical examples to show the effectiveness of the new algorithm. It is found that adaptivity is essential to capture moving flow fronts. We show how the results obtained through this approach are more accurate than using RAR method or PINN with fixed collocation points, while having a comparable computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call