Abstract
SummaryWe define residuals for point process models fitted to spatial point pattern data, and we propose diagnostic plots based on them. The residuals apply to any point process model that has a conditional intensity; the model may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Some existing ad hoc methods for model checking (quadrat counts, scan statistic, kernel smoothed intensity and Berman's diagnostic) are recovered as special cases. Diagnostic tools are developed systematically, by using an analogy between our spatial residuals and the usual residuals for (non-spatial) generalized linear models. The conditional intensity λ plays the role of the mean response. This makes it possible to adapt existing knowledge about model validation for generalized linear models to the spatial point process context, giving recommendations for diagnostic plots. A plot of smoothed residuals against spatial location, or against a spatial covariate, is effective in diagnosing spatial trend or co-variate effects. Q–Q-plots of the residuals are effective in diagnosing interpoint interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.