Abstract

Milk is routinely tested for proper pasteurization. The Scharer and Fluorophos methods, among others, test for residual alkaline phosphatase (ALP) activity to assure proper pasteurization. Until recently there were no tests available to accurately detect residual ALP activity levels below the U.S. legal limit of 1 μg of phenol or 350 mU of ALP per liter of milk. The new Fluorophos method can detect accurately residual ALP activity levels as low as 10 mU/liter.The Fluorophos method was used to investigate residual ALP activity levels in several fluid milk products. The milk products were thermally processed under various time and temperature protocols below, at, and above current U.S. Food and Drug Administration-mandated heat treatments for fluid milk and milk products. The data established values for residual ALP activity in milks pasteurized under high-temperature short-time (HTST) and low-temperature long-time (LTLT) treatments. The mean ALP activities for whole, 2% lowfat, 1% lowfat, skim, half and half, and chocolate-flavored milks thermally processed at the legal minimum HTST pasteurization treatment are 169.7 ± 12.3, 145.2 ± 9.3, 98.6 ± 8.9, 72.5 ± 4.2, 38.4±4.6 and 157.3±6.5 mU/liter, respectively. The mean ALP activities generated at the legal minimum LTLT pasteurization treatment are 81.8 ± 4.8, 66.4 ± 5.9, 56.4 ± 2.1, 39.1 ± 3.9, 35.0±1.2 and 91.3±7.7 mU/liter, respectively. The values for all milks pasteurized at the legal minimum heat treatment were significantly below the current legal cutoff for residual ALP activity of 350 mU/liter of milk or milk product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.