Abstract

Rising energy demands, economic challenges, and the urgent need to address climate change have led to the emergence of a market wherein consumers can both purchase and sell electricity to the grid. This market leverages diverse energy sources and energy storage systems to achieve significant cost savings for consumers while providing critical grid support for utilities. In this study, an energy management system has been employed to tackle the optimization problem associated with various energy sources. This approach relies on mixed-integer linear programming (MILP) to optimize energy utilization while adhering to diverse constraints, yielding a feasible energy solution. This model is applied to real-world energy system consumption data and forecasts the most cost-effective day-ahead energy plans for different types of loads engaged in demand response. Furthermore, time-based charging and discharging strategies for electric vehicles and energy storage systems are considered, conducting a comprehensive analysis of energy costs across various storage devices. Our findings demonstrate that implementing this model can lead to an 18.26% reduction in operational costs when using lithium batteries and a remarkable 14.88% reduction with lead–acid batteries, particularly when integrating solar power and an EV into the system, while GHG is reduced by 36,018 grams/day for a load of 25 kW in one particular scenario. However, the analysis reveals that integrating wind power is not economically viable due to its comparatively higher operational costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call