Abstract
The smart grid is an important application field of the Internet of things. This paper presents a method of user electricity consumption pattern analysis for smart grid applications based on the audio feature EEUPC. A novel similarity function based on EEUPC is adapted to support clustering analysis of residential load patterns. The EEUPC similarity exploits features of peaks and valleys on curves instead of directly comparing values and obtains better performance for clustering analysis. Moreover, the proposed approach performs load pattern clustering, extracts a typical pattern for each cluster, and gives suggestions toward better power consumption for each typical pattern. Experimental results demonstrate that the EEUPC similarity is more consistent with human judgment than the Euclidean distance and higher clustering performance can be achieved for residential electric load data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.