Abstract

The Smart Grids, which refers to the next generation of electrical power systems, are very complex systems with few theoretical researches. It needs to consider all sides of power grid, making it more intelligent and flexible. This notion is presented as an answer to changes in the electricity market, aiming to manage the increased demand while ensuring a better quality of service and more safety. This paper presents an integration of the distributed energy resources in the smart gird in an urban context. The analysis takes into account the integration of renewable energy production such as photovoltaic systems and micro-wind turbine systems, battery storage and gridable vehicles that can provide power to the grid by discharging the battery. Consequently, a mixed integer linear programming is proposed to optimize the energy production and consumption systems as well as the charging and discharging time of electric vehicle among a residential consumer. Besides, several case studies are presented by varying significant factors through design of experiments with Taguchi method to find the optimal solution and to illustrate their influence in the complexity of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call