Abstract
Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH) contributes to high morbidity and mortality. Although it is well recognized that acute neuroinflammation reaction is one of the most important triggers of EBI, pharmacotherapy proved to be clinically effective against the initiating of neuroinflammation after SAH is lacking. The resident microglia and infiltrated peripheral monocyte are two main types of immune cells in central nervous system (CNS) and control the inflammation process in brain after SAH. But the time course and relative contributions of these two immune cell activations after SAH are unknown. The p75 neurotrophin receptor (p75NTR), member of TNF receptor superfamily, expresses on infiltrated peripheral monocytes and suppresses their proinflammatory action after brain insults. But the p75NTR expression on resident microglia in vivo is rarely explored and their function keeps elusive. Therefore, we designed this study to investigate the time course of resident microglia activation and peripheral monocyte infiltration, as well as the microglial expression of p75NTR by using CX3C-chemokine receptor 1 (Cx3cr1) and chemokine receptor 2 (Ccr2) double transgenic mice (Cx3cr1GFP/+Ccr2RFP/+) after SAH. The results showed activated microglia was observed in cortex as early as 24 h and further increased at 48 and 72 h post SAH, while the infiltrated monocyte was not found until 72h. In addition, activated microglia expressed p75NTR acutely and p75NTR specific antagonist TAT-Pep5 significantly reduced microglia activation, neuroinflammation and EBI from 24 to 72 h. Together, these data suggest that the early neuroinflammation reaction might be initiated and intensified mainly by resident microglia rather than infiltrated monocyte at least in the first 48 h after SAH and p75NTR blockading by TAT-Pep5P might alleviate EBI through mediating microglial activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.