Abstract

The residence times of molecular complexes in solution are important for understanding biomolecular functions and drug actions. We show that NMR data of intermolecular hydrogen-bond scalar couplings can yield information on the residence times of molecular complexes in solution. The molecular exchange of binding partners via the breakage and reformation of a complex causes self-decoupling of intermolecular hydrogen-bond scalar couplings, and this self-decoupling effect depends on the residence time of the complex. For protein-DNA complexes, we investigated the salt concentration dependence of intermolecular hydrogen-bond scalar couplings between the protein side-chain (15)N and DNA phosphate (31)P nuclei, from which the residence times were analyzed. The results were consistent with those obtained by (15)Nz-exchange spectroscopy. This self-decoupling-based kinetic analysis is unique in that it does not require any different signatures for the states involved in the exchange, whereas such conditions are crucial for kinetic analyses by typical NMR and other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.