Abstract
Residence time effects on phase transformation of silver nanoparticles (AgNPs) (15-50 nm, with and without polyvinylpyrrolidone (PVP) coating) were investigated in reducing soils using experimental geochemistry and synchrotron-based x-ray techniques. After 30 days of anaerobic incubation, a substantial fraction of PVP-coated AgNPs (15 nm) were transformed into Ag₂S and or humic acid (HA) complexed Ag(I), whereas only the HA fraction was dominant in uncoated AgNPs (50 nm). Several investigations recently reported that sulfidation of AgNPs to Ag₂S was the predominant mechanism controlling the fate of AgNP in soil-water environments. However, this investigation showed each AgNP underwent particle-specific chemical transformations to different end compounds after 30 days. Considering the small contribution of Ag(I) dissolution from all AgNPs (less than 5%), we concluded that changes in solid-state chemical speciation of sorbed AgNPs was promoted by particle-specific interactions of NPs in soil chemical constituents, suggesting a critical role of soil absorbents in predicting the fate of AgNPs in terrestrial environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.