Abstract

Abstract Residence time distribution (RTD) experiments provide very important information about the performance of reactors. In the present work, RTD experiments were performed with varying recycle and recirculation rates to see their effect on mean residence time (MRT), flow bypassing and stagnant volume in the reactor. A computer program was developed to solve the model equations using fourth-order Runge–Kutta method. A low bypass flow (<5%) was observed from the experimental RTD curves obtained at different operating conditions. A change in the MRT from 1.2 to 1.8 h was observed at different recycle and recirculation rates. At maximum recycle and maximum recirculation, in the study ranges, a 37% stagnant volume (with exchange) was predicted. In the absence of recycle and recirculation, a 53% stagnant volume (with exchange) was predicted corresponding to the best fit of the experimental RTD data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call