Abstract
There is increasing evidence that forage nutrition quality is becoming more unstable over time due to climate change and/or human activities. However, there are limited numbers of studies at the regional scale exploring the spatiotemporal patterns and driving mechanisms of temporal stability of nutrition quality. Therefore, this study quantified the spatiotemporal patterns of temporal stability of forage nutrition quality in alpine grasslands of the Qinghai–Tibet Plateau under the singular or combined influences of climate change and human activities in 2000–2020. Temporal stability of forage nutrition quality displayed obvious spatiotemporal patterns, with human activities altering the impact of climate change on these spatiotemporal patterns. Under combined effects of climate change and human activities, spatial average values of temporal stability of crude protein (CP), ash (Ash), ether extract (EE), water-soluble carbohydrates (WSC), acid detergent fiber (ADF), and neutral detergent fiber (NDF) decreased by 13.54 %, 7.40 %, 9.02 %, 17.78 %, 9.20 %, and 7.28 % across the whole grasslands, respectively. However, 39.43 %, 45.72 %, 42.98 %, 37.82 %, 42.27 %, and 43.50 % areas showed increasing trends for the temporal stability of CP, Ash, EE, WSC, ADF and NDF, respectively. Climate change predominated 46.15 %, 44.46 %, 44.22 %, 47.32 %, 28.68 %, and 45.31 % of the relative change of temporal stability of CP, Ash, EE, WSC, ADF, and NDF, but human activities had higher influence for 53.82 %, 55.53 %, 55.77 %, 52.55 %, 71.30 %, and 54.68 % of grasslands, respectively. Therefore, the spatial patterns of temporal stability of forage nutrition quality were shifting towards homogeneity, with an overall decrease in temporal stability but localized increases in alpine grasslands of the Qinghai-Tibet Plateau. The effects of climate change and human activities on forage nutrition quality were not always synergistic. The trade-off between nutrition quality and its temporal stability did not always exist, but varied with geographic position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.