Abstract

Although triangular silver (Ag) nanoplates are intrinsically unstable, this characteristic has been taken advantage of in the development of a novel sensing platform. However, most of these applications have relied on halide ions as etchants. In the current work, we used sodium 4-vinylbenzenesulfonate (Na-VBS) as a new powerful etchant of triangular silver (Ag) nanoplates. When aged with Na-VBS at room temperature, Na-VBS etched Ag nanoplates nearly as powerfully as halides did, and these nanoplates rapidly transformed into oblate nanospheroids. This shape evolution permitted tuning of the corresponding localized surface plasmon resonance (LSPR) features of the Ag nanostructures. Interestingly, passivation of the Ag nanoplate surface with melamine was shown to protect the nanoplates from Na-VBS-induced etching. The rate of change of the color and spectral features of the Ag nanoplate solution exposed to Na-VBS was found to be strongly correlated with the concentration of melamine in the solution. This association allowed us to apply this system to the development of a novel platform for sensing melamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call