Abstract

This study explores the role of ovarian hormones in the phenotypic shaping of peripheral T-cell pool over the reproductive lifespan of rats. For this purpose, 2-month-old prepubertally ovariectomised (Ox) rats, showing oestrogen and progesterone deficiency, and 11-month-old Ox rats, exhibiting only progesterone deficiency, were examined for thymus output, and cellularity and composition of major TCRαβ+ peripheral blood lymphocyte (PBL) and splenocyte subsets. Although ovariectomy increased thymic output in both 2- and 11-month-old rats, the count of both CD4+ and CD8+ PBLs and splenocytes increased only in the former. In the blood and spleen of 11-month-old Ox rats only the count of CD8+ cells increased. Although ovariectomy affected the total CD4+ count in none of the examined compartments from the 11-month-old rats, it increased CD4+FoxP3+ PBL and splenocyte relative proportions over those in the age-matched controls. The age-related differences in the cellularity and the major subset composition in Ox rats were linked to the differences in the ovarian steroid hormone levels registered in 2- and 11-month-old rats. The administration of progesterone to Ox rats during the seven days before the sacrificing confirmed contribution of this hormone deficiency to the ovariectomy-induced changes in the TCRαβ+ PBL and splenocyte pool from 11-month-old rats. The expansion of the CD8+ splenocyte subset in the 11-month-old Ox rats reflected increases in cellularity of memory and, particularly, naïve cells. This was due to greater thymic output of CD8+ cells and homeostatic proliferation than apoptosis in 11-month-old Ox rats when compared with age-matched sham-Ox control rats. The homeostatic changes within CD8+ splenocyte pool from 11-month-old Ox rats, most likely, reflected the enhanced splenic IL-7 and TGF-β mRNA expression. Overall, in adult female rats, circulating oestrogen and progesterone provide maintenance of T-cell counts, a diversity of T-cell repertoire, and the main T-cell subset composition in the periphery. Progesterone deficiency affects mainly the CD8+ lymphocyte compartment through increasing thymic CD8+ cell export and upsetting homeostatic regulation within the CD8+ splenocyte pool. These alterations were reversible through progesterone supplementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.