Abstract
Selective inhibition of BET Brd2 BD-I and BD-II bromodomains is expected to elicit subtle pharmacological difference in anti-glioblastoma therapy. Here, structural basis and energetic property underlying the selective interaction of acetylated peptide ligands with Brd2 BD-I and BD-II were investigated in detail using molecular simulation and computational analysis. It is revealed that the acetyl-lysine is, as expected, a primary anchor residue that confers affinity and stability to bromodomain-peptide binding, while few secondary anchor residues flanking the acetyl-lysine determine specificity and selectivity of peptide interaction with different bromodomains. We also demonstrated that peptide selectivity can be totally reversed by only grafting the secondary anchor residues from one to another. As an instance, fluorescence-based assays showed that the Stat3-derived acetylated peptide Stat3_K87 possesses a high affinity to BD-II (KdBD-II = 9.7 μM) and a strong selectivity for BD-II over BD-I (S = 0.21-fold). Grafting the three secondary anchor residues Lys8, Gly11 and Gly13 of a BD-I-over-BD-II selective H4 N-terminal peptide to the corresponding residue positions of Stat3_K87, which results in a grafted counterpart Stat3(KGG)_K87, can completely change the peptide selectivity from the BD-II-over-BD-I (S = 0.21-fold) of Stat3_K87 to the BD-I-over-BD-II (S = 2.5-fold) of Stat3(KGG)_K87.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.