Abstract
Recently, a semiactive hydraulic stiffness damper operating in the resetting mode, referred to as the resetting semiactive stiffness damper (RSASD), was shown to be effective in reducing the structural response due to dynamic loads. In this paper, a general resetting control law based on the Lyapunov theory is proposed for an RSASD. The performance of such a resetting controller and of a switching control method are investigated through extensive numerical simulations using different types of earthquake excitations. Simulation results indicate that an RSASD is more effective in suppressing the building response subject to earthquakes than a switching semiactive stiffness damper. Likewise, the performance of a particular control method depends on the types of earthquake excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.