Abstract

A detailed in situ isotopic (U–Pb, Lu–Hf) and geochemical study of zircon populations in a composite sequence of foliated to massive Cambro-Ordovician intrusions in the Deep Freeze Range (North Victoria Land, Antarctica), has highlighted great complexity in zircon systematics. Zircons in deformed granitoids and tonalites display complex internal textures, a wide spread of concordant U–Pb ages (between 522 and 435 Ma) and unusual trace-element compositions (anomalous enrichment of light rare earth elements, U, Th and Y) within single zircon grains. In contrast, zircons from undeformed samples display a limited range of U–Pb ages and trace-element compositions. Zircons from all age and textural populations in most of the deformed and undeformed samples show a relatively narrow range of εHf values, suggesting that the Lu–Hf system remained undisturbed. Inferred emplacement ages cover a time interval of about 30 Myr: from 508 to 493 Ma for the oldest strongly foliated synkinematic Howard Peaks megacrystic monzogranites and high-K calc-alkaline mafic to intermediate rocks of the ‘Corner Tonalite’ unit; from about 489 to 481 Ma for the younger massive shoshonitic mafic dyke suite and the high-K calc-alkaline Keinath granite. The observed isotopic and chemical variations in zircon are attributed to a sub-solidus recrystallization under hydrous conditions and varying temperature, in a setting characterized by a transpressional to extensional stress regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.