Abstract

Recent studies on natural and experimental seismic faults have revealed that frictional heating plays an important role in earthquake dynamics. We report IRSL and IRPL signals changes in the granite rock after frictional experiments. Our results indicate that high-rate (2.0 m/s) frictional heating during seismic events can reset the 'geologic clocks' of fault rocks. Thus, the IRSL and IRPL signal in granite from natural fault zones has the potential to directly constrain the age of seismic events. Whereas low-rate (2.0 mm/s) frictional slip, even over long times (1000 s), does not reset the IRSL and IRPL signals in granite. The result is similar to the quartz gouge(Hui Li Yang., et al., 2019).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call