Abstract

In this work, the resistance switching mechanism of Reset process has been suggested through the statistics of the reset voltage and the reset current, which is consistent with the thermal-activated dissolution model. Furthermore, the variability nature of the switching parameters has been analyzed by screening the statistical data into different resistance ranges and the distributions are shown to be compatible with a Weibull distribution. Finally, we propose criteria for selecting high-performance memristor materials based on the statistical results and the temperature evolution of the conductive filament (CF) in three different memristor materials (TaOx, HfO2 and NiO). The high-performance materials tend to exhibit a higher Weibull slope and there are no variation and extra heat generated in the CF before the reset event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.