Abstract

We firstly propose a novel resistive random access memory (RRAM) cell structure, which makes it possible to minimize the switching area and to maximize the electrical field where resistive switching occurs, resulting in the improvement of resistive switching characteristics. With excellent structural advantages, resistive switching characteristics such as reset current and set voltage fluctuation are improved through the enhancement of conductive filament (CF) controllability. A simple fabrication process is delivered and the device performance from the viewpoints of the forming voltage, set voltage, and reset current is investigated. Conducting defect effects are also investigated in comparison with the conventional RRAM cell structure. Numerical simulation is performed using a random circuit breaker (RCB) model to confirm the proposed structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call