Abstract

AbstractIn this paper the class of linear impulsive systems is considered. These systems are those with a continuous linear dynamics for all time, except at a sequence of instants. When such a discrete time occurs, the state undergoes a jump, or more precisely follows a discrete linear dynamics. The sequence of time instants, when a discrete dynamics occurs, is nearly-periodic only, i.e. it is distant from a periodic sequence to an uncertain distance. This paper succeeds to state tractable conditions to analyze the stability, and to design reset matrices such that the hybrid system is globally asymptotically stable to the origin. The approach is based on a polytopic embedding of the uncertain dynamics. An example illustrates the main stability result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.