Abstract

An effective time-dependent Hamiltonian can be implemented by making a quantum system fly through an inhomogeneous potential, realizing, for example, a quantum gate on its internal degrees of freedom. However, flying systems have a spatial spread that will generically entangle the internal and spatial degrees of freedom, leading to decoherence in the internal state dynamics, even in the absence of any external reservoir. We provide formulas valid at all times for the dynamics, fidelity, and change of entropy for ballistic particles with small spatial spreads, quantified by Δx. This non-Markovian decoherence can be significant for ballistic flying qubits (scaling as Δx^{2}) but usually not for flying qubits carried by a moving potential well (scaling as Δx^{6}). We also discuss a method to completely counteract this decoherence for a ballistic qubit later measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.