Abstract

Reservoir sedimentation is the gradual accumulation of incoming sediments from upstream catchment leading to the reduction in useful storage capacity of the reservoir. Quantifying the reservoir sedimentation rate is essential for better water resources management. Conventional techniques such as hydrographic survey have limitations including time-consuming, cumbersome and costly. On the contrary, the availability of high resolution (both spatial and temporal) in public domain overcomes all these constraints. This study assessed Jayakwadi reservoir sedimentation using Landsat 8 OLI satellite data combined with ancillary data. Multi-date remotely sensed data were used to produce the water spread area of the reservoir, which was applied to compute the sedimentation rate. The revised live storage capacity of the reservoir between maximum and minimum levels observed under the period of analysis (2015–2017) was assessed utilizing the trapezoidal formula. The revised live storage capacity is assessed as 1942.258 against the designed capacity of 2170.935 Mm3 at full reservoir level. The total loss of reservoir capacity due to the sediment deposition during the period of 41 years (1975–2017) was estimated as 228.677 Mm3 (10.53%) which provided the average sedimentation rate of 5.58 Mm3 year1. As this technique also provides the capacity of the reservoir at the different elevation on the date of the satellite pass, the revised elevation–capacity curve was also developed. The sedimentation analysis usually provides the volume of sediment deposited and rate of the deposition. However, the interest of the reservoir authorities and water resources planner’s lies in sub-watershed-wise sediment yield, and the critical sub-watersheds upstream reservoir requires conservation, etc. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) was used for the estimation of sediment yield of the reservoir. The average annual sediment yield obtained from the SWAT model using 36 years of data (1979–2014) was 13.144 Mm3 year−1 with the density of the soil (loamy and clay) of 1.44 ton m−3. The findings revealed that the rate of sedimentation obtained from the remote sensing-based methods is in agreement with the results of the hydrographic survey.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call