Abstract

Reservoir porosity and permeability are considered as very important parameters in characterizing oil and gas reservoirs. Traditional methods for porosity and permeability prediction are well log and core data analysis to get some regression empirical formulas. However, because of strong non-linear relationship between well log data and core data such as porosity and permeability, usual statistical regression methods are not completely able to provide meaningful estimate results. It is very difficult to measure fine scale porosity and permeability parameters of the reservoir. In this paper, the least square support vector machine (LS-SVM) method is applied to the parameters estimation with well log and core data of Qiongdongnan basin reservoirs. With the log and core exploration data of Qiongdongnan basin, the approach and prediction models of porosity and permeability are constructed and applied. There are several type of log data for the determination of porosity and permeability. These parameters are related with the selected log data. However, a precise analysis and determine of parameters require a combinatorial selection method for different type data. Some curves such as RHOB,CALI,POTA,THOR,GR are selected from all obtained logging curves of a Qiongdongnan basin well to predict porosity. At last we give some permeability prediction results based on LS-SVM method. High precision practice results illustrate the efficiency of LS-SVM method for practical reservoir parameter estimation problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.