Abstract

Abstract Differentially dolomitized carbonate strata in the Western Canada Sedimentary Basin (WCSB) are increasingly targeted for carbon capture, utilization, and storage (CCUS), yet few studies have evaluated the petrophysical characteristics of these conventional hydrocarbon reservoirs for this purpose. To address this, this study uses drill-core analysis (sedimentology, diagenesis, pore morphology, and distribution), together with core-plug and production data, to evaluate the properties of five depleted oil and gas fields in the Middle to Upper Devonian Swan Hills Formation, Leduc Formation and Wabamun Group. The Swan Hills and Leduc formations are composed of reef, shoal, and lagoon deposits that are predominantly fossil-rich (e.g., stromatoporoid-dominated rudstones and boundstones). In contrast, the carbonate-ramp deposits of the Wabamun Group are fossil-poor, consisting instead of variably bioturbated carbonate mudstones, wackestones, and packstones. Replacement dolomitization is variable throughout each stratigraphic unit, but generally occurs within fossil-rich and/or heavily bioturbated intervals. Fracture densities are broadly comparable in limestone and dolostone. Porosity in the Swan Hills and Leduc formations is predominantly moldic and vuggy, occurring where fossils (e.g., stromatoporoids) are partially or fully dissolved. Pore space in the Wabamun Group is mostly restricted to intercrystalline porosity in burrows. In general, burial cements (e.g., calcite and dolomite) are volumetrically insignificant and only partially fill pores. Exceptions to this include porosity-occluding cements associated with fractures and breccias in the vicinity of faults. Dolomitization and depositional facies are found to exert a strong control on pore morphology, distribution, and interconnectivity. Porosity is principally controlled by the relative abundance of skeletal grains and by the presence of burrows. These highly porous facies acted as fluid pathways during burial diagenesis, resulting in their preferential dolomitization, solution enhancement of pre-existing pores, and creation of volume reduction-related porosity. The high CO2 storage capacity and low unplanned plume migration risk (due to depositional and/or diagenetic baffles) of dolomitized reefal reservoirs (e.g., Swan Hills and Leduc formations) make them more attractive targets for CCUS than those with limited capacity and/or potential migration pathways (e.g., fault-related fractures and breccias in the Wabamun Group). These results demonstrate that drill-core analysis, in combination with legacy data, can provide valuable insights into the factors that control reservoir CO2 injectivity, plume migration, and storage capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.