Abstract

Abstract For the Johan Castberg field development project, injector wells are important for achieving high production and overall high recovery factors. Injectivity has become more important due to limitations in injection pressures and required control of fracture growth. Securing injectivity has been identified as one of the project’s main risks, making drill-in fluid and breaker fluid system qualification a vital parameter for success. Operational procedures and completion design also affect the effectiveness of breaker fluid placement and, thus, the overall injectivity of the well. In this paper, we present a cross-disciplinary systematic approach for the reservoir drill-in fluid and breaker fluid qualification to ensure injectivity in these wells. Two wells were selected for covering the expected pressure and temperature range of the field in an environmentally sensitive area. Two independent fluid systems were designed, where the bridging material consisted of either sized salt particles or calcium carbonate particles. The open hole completion design has been optimized for an effective breaker fluid placement, using a modified gravel pack system with a wash pipe. The displacement sequence has been optimized for effective deployment. An extensive laboratory test matrix for both the reservoir drilling fluid (RDF) and breaker fluid system was established, including thorough analysis of the interaction between the deposited filter cake and the breaker fluid system. The RDF and breaker fluid formulation optimization was performed whilst keeping in mind the operational requirements and the well’s future injectivity The presented results show successful qualification of two independent fluid and breaker fluid systems where filter cake breakthrough is achieved within the desired time frame. The fluid systems in combination with the lower completion design and operational procedures ensure maximal reservoir exposure of the breaker fluid solution and enable rapid deterioration of the filter cake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call