Abstract

ABSTRACTThe mid-Cretaceous Mauddud Formation is the main producing carbonate reservoir in the Raudhatain and Sabiriyah fields of northern Kuwait. Historical field information and results from waterflood pilots indicate that reservoir performance in these reservoirs is controlled by geological complexity at several scales. A detailed, integrated sedimentological and biostratigraphic investigation of the reservoirs, combined with dynamic reservoir data, have provided an understanding of Mauddud reservoir heterogeneity and of the principle controls on reservoir matrix behaviour. The largely carbonate Mauddud Formation overlies the Upper Burgan Member, a thick succession of fluvio-deltaic deposits, and consists of a diverse suite of carbonate facies deposited in low to high-energy, shallow-marine ramp settings. The basal part of the reservoir comprises mixed carbonate and siliciclastic sediments and reflects the establishment of a carbonate-dominated regime during waning supply of Burgan siliciclastic sediment. This system was eventually drowned and covered by the Wara Formation, a shaly offshore succession that is also the reservoir seal.Sedimentary facies associations and microfossil assemblages within the reservoir are organised in a broadly upward-shallowing succession constructed of several transgressive-regressive cycles, which are defined by prominent, widely-correlatable flooding surfaces. Each cycle exhibits a characteristic internal stacking pattern of minor depositional cycles. Field-wide mapping and interpretation of facies within each cycle reveals a SW to NE, proximal to distal, trend consistent with regional seismic and palaeogeographic interpretations. The high-energy, inner to mid-ramp carbonate succession in the lower portion of the Mauddud reservoir is punctuated by siliciclastic incursions. Abrupt lateral facies changes, thickness variations, and local intra-reservoir erosion surfaces in this section suggest that deposition was influenced by subtle syndepositional tectonism. The upper part of the reservoir, in contrast, lacks significant siliciclastic influence and is made up of widely-correlatable, lower-energy carbonate facies, although local subtle facies variations show that the Raudhatain-Sabiriyah structures continued as palaeohighs during deposition. The contrast in quality between grain-dominated facies at the crests of the two structures and less grainy facies along their flanks was accentuated by carbonate cementation in the water legs of the reservoirs, largely in the form of calcite concretions of variable abundance. Cementation is most pronounced in low-energy wackestone facies, particularly in proximity to flooding surfaces where nodules may be amalgamated to form laterally continuous, cemented layers which are commonly fractured. Another significant, but contrasting, diagenetic modification within the reservoir was the generation of secondary macroporosity through dissolution of aragonitic skeletal components in a shallow to intermediate burial environment.The stratigraphic evolution of the Mauddud reservoir, and its diagenetic overprint, in addition to post-depositional fracturing and faulting, created reservoir heterogeneities, which are critical to reservoir performance; one of the most significant of these is the relationship between horizontal and vertical permeability. Parasequences dominated by high-energy inner ramp grainstones, thin inner ramp rudist-bearing tempestites, and vuggy and fractured rudist floatstones and rudstones constitute thief zones that represent major challenges to reservoir management. In contrast, some cemented layers and flooding surfaces support pressure differentials of up to several hundred pounds/square inch (psi), thus complicating sweep and promoting reservoir compartmentalisation. The strong facies, diagenetic and stratigraphic controls on the distribution of thief zones and intra-reservoir baffles demonstrates how important it is to comprehensively understand reservoir sedimentology and stratigraphy when devising long-term development plans for reservoirs of this deceptively simple character.More recent 3-D seismic data, production surveillance, and horizontal development wells show faults and fractures to be important heterogeneities in both reservoirs. Due to the immaturity of the water flood in the Mauddud reservoirs, the impact of these features on field and well behaviour is as yet unclear, but it is anticipated that the impact of such features on well and field performance will become more pronounced during later development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.