Abstract

Reservoir computing (RC) by supervised training, a bio-inspired paradigm, is gaining popularity for processing time-dependent data. Compared to conventional recurrent neural networks, RC is facilely implemented by available hardware and overcomes some obstacles in training period, such as slow convergence and local optimum. In this paper, we propose and characterize a novel reservoir computing system based on a semiconductor laser with double optoelectronic feedback loops. This system shows obvious improvement on prediction, speech recognition and nonlinear channel equalization compared to the traditional reservoir computing systems with single feedback loop. Then some influencing factors to optimize the performance of the new RC are numerically studied, and its great potential of addressing more complex and troubling problems in information processing is expected to be exploited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.