Abstract

Three dimensional (3D) seismic data, and a suite of four geophysical well logs from four wells located on the Lee field, Niger Delta were analyzed using Petrel software for the aim of reservoir characterization and volumetric analysis of the field. The objectives among others include identification and delineation of the reservoirs and estimating the petrophysical parameters from the well logs available, generating time and depth structure maps of horizons from the seismic section, and a volumetric analysis in order to estimate hydrocarbon in place. The method adopted involves petrophysical analysis, structural analysis, static modelling, and volumetric analysis. Detailed petrophysical analysis revealed three reservoirs. Average Reservoir parameters such as effective porosity (0.17), gross thickness (86 m), hydrocarbon saturation (0.42), permeability (1215 mD) and net-to-gross (0.79) were derived from petrophysical analysis. The three reservoirs were classified using average results of petrophysical parameters. And based on these results, Reservoir 1 is the most prolific while Reservoir 3 is the least prolific within Lee field. Fault and Horizon interpretations were done using Petrel software which culminated in delivery of 3D structural map of the reservoirs. Structural,stratigraphic and Petrophysical models were developed and then integrated to produce a high resolution static model for Reservoir 1. The hydrocarbon in place shows that reservoir 1 is of appreciable thickness and areal extent. The volume of hydrocarbon originally in place was estimated to be 367,180,095.08 barrels of oil.Keywords: volumetric, petrophysical, fault, saturation, net-to-gross, permeability, horizon

Highlights

  • Three dimensional (3D) seismic data, and a suite of four geophysical well logs from four wells located on the Lee field, Niger Delta were analyzed using Petrel software for the aim of reservoir characterization and volumetric analysis of the field

  • Reservoir characterization is a very important step in exploration and development phases of a prospect and combines multi-disciplinary results of different analyses to reduce risk and enhance understanding of reservoirs. This involves the use of empirical formula to estimate the reservoir parameters such as volume of shale, Formation factor, porosity, water saturation, permeability, hydrocarbon saturation etc

  • Location of the study area: Lee field is located within the onshore continental margin, south-south Niger Delta (Figure 1)

Read more

Summary

Introduction

Three dimensional (3D) seismic data, and a suite of four geophysical well logs from four wells located on the Lee field, Niger Delta were analyzed using Petrel software for the aim of reservoir characterization and volumetric analysis of the field. The objectives among others include identification and delineation of the reservoirs and estimating the petrophysical parameters from the well logs available, generating time and depth structure maps of horizons from the seismic section, and a volumetric analysis in order to estimate hydrocarbon in place. Reservoir characterization is a very important step in exploration and development phases of a prospect and combines multi-disciplinary results of different analyses to reduce risk and enhance understanding of reservoirs. This involves the use of empirical formula to estimate the reservoir parameters such as volume of shale, Formation factor, porosity, water saturation, permeability, hydrocarbon saturation etc. From the Eocene to Recent, the delta has prograded south-westwards, forming depobelts that represent the most active portion of the delta at each stage of its development (Doust and Omatsola, 1990)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call