Abstract

The objective is to demonstrate the possibility of reservoir permeability mapping using a frequency-dependent seismic attribute and analysis of log data. The coefficients of normal reflection and transmission of a planar p-wave from a permeable boundary can be expressed asymptotically as power series with respect to a small dimensionless parameter depending on the reservoir fluid mobility. The zero-order terms of the asymptotic expressions do not depend on reservoir rock permeability and are similar to the one predicted by the classical elastic model. The next, first order, term involves a factor proportional to fluid mobility, both for reflection and transmission coefficients. In case of a very thing porous permeable layer (h<<λ) transmitted-reflected slow waves can create a low frequency resonance providing an opportunity for seismic inversion. The functional structure of the first order asymptotic term suggests a frequency-dependent seismic attribute, which is proportional to reservoir fluid mobility. We have derived such attribute from real seismic data and analyzed it vs. log data. We have obtained that the possibility for seismic imaging of the reservoir transport properties, in particular mapping the lateral permeability variations, is realistic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.