Abstract

Lipid metabolism of the subarctic moss Dicranum elongatum was studied by feeding the moss with 2‐14C‐acetate and, after extraction of the lipids, counting the 14C‐content of different lipid fractions immediately after feeding or after chase periods. Translocation of 14C after 14C‐feeding was studied with autoradiography. Both low temperature (+6°C) and drought (at +23°C) resulted in increased incorporation of 14C into the neutral lipid (NL) fraction and decreased incorporation of 14C into the glycolipid (GL) fraction of the green shoot part of the moss. The distribution of radioactivity between the NL classes suggests that diacylglycerols (1, 2‐DAG) and common triacylglycerols (cTAG) are turned into acetylenic triacylglycerols (aTAG), which are accumulated preferentially. The decrease in the radioactivity of the GL fraction was due to two unknown fractions, whereas 14C incorporation into the chloroplast membrane lipids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), was very low throughout the experiments. The phospho‐lipid (PL) fraction accounted for 48–63% of total lipid radioactivity at both low and high temperatures. 2‐14C‐acetate feeding to the senescent moss part resulted in vigorous 14C incorporation into the lipids, especially into the reserve TAGs. Electron microscopic examination showed the presence of plastids, which explains the capability of the senescent part of the moss for lipid synthesis. The fact that transport of 14C from 2‐14C‐acetate took place upwards and downwards in the moss shoot, together with the capability for lipid synthesis of the senescent moss part, supports the suggestion that the senescent moss part plays a role as an energy store.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.