Abstract
The objective of Multi-area economic dispatch (MAED) is to determine the generation levels and the interchange power between areas that minimize fuel costs, while satisfying power balance and generating limit and transmission constraints. If an area with excess power is not adjacent to a power deficient area, or the tie-line between the two areas is at transmission limit, it is necessary to find an alternative path between these two areas to transmit additional power. When a MAED problem is solved with spinning reserve constraints, the problem becomes further complicated. The power allocation to each unit is done in such a manner that after supplying the total load, some specified reserve is left behind. In this paper, the authors compare classic PSO and DE strategies and their variants for reserve constrained MAED. The superior constraint handling capability of these techniques enables them to produce high quality solutions. The performance is tested on a 2-area system having 4 generating units and a 4-area, 16-unit system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Evolutionary Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.