Abstract

The entire world is aware of the serious issue of global warming and therefore utilizing renewable energy sources is the most encouraging steps toward solving energy crises, and as a result, energy storage solutions are necessary. The supercapacitors (SCs) have a high-power density and a long cycle life, they are promising as an electrochemical conversion and storage device. In order to achieve high electrochemical performance, electrode fabrication must be implemented properly. Electrochemically inactive and insulating binders are utilized in the conventional slurry coating method of making electrodes to provide adhesion between the electrode material and the substrate. This results in an undesirable "dead mass," which lowers the overall device performance. In this review, we focused on binder-free SCs electrodes based on transition metal oxides and composites. With the best examples providing the critical aspects, the benefits of binder-free electrodes over slurry-coated electrodes are addressed. Additionally, different metal-oxides used in the fabrication of binder-free electrodes are assessed, taking into account the various synthesis methods, giving an overall picture of the work done for binder-free electrodes. The future outlook is provided along with the benefits and drawbacks of binder-free electrodes based on transition metal oxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call