Abstract

The object of this study was to identify characteristic preoperative angiographic and MR imaging features of safely resectable insular gliomas and describe the surgical techniques and postoperative clinical outcomes. Thirty-eight patients with insular gliomas underwent transsylvian resection between 1995 and 2007. Patient demographics, presenting symptoms, pathological findings, and neurological outcomes were retrospectively reviewed. Preoperative MR imaging-defined tumor volumes were superimposed onto the preoperative stereotactic cerebral angiograms to determine whether the insular tumor was confined lateral to (Group I) or extended medially around (Group II) the lenticulostriate arteries (LSAs). Twenty-five patients (66%) had tumors situated lateral to the LSAs and 13 (34%) had tumors encasing the LSAs. Insular gliomas situated lateral to the LSAs led to significant medial displacement of these vessels (161 +/- 39%). In 20 (80%) of these 25 cases the boundaries between tumor and brain parenchyma were well demarcated on preoperative T2-weighted MR images. In contrast, there was less displacement of the LSAs (130 +/- 14%) in patients with insular gliomas extending around the LSAs on angiography. In 11 (85%) of these 13 cases, the tumor boundaries were diffuse on T2-weighted MR images. Postoperative hemiparesis or worsening of a preexisting hemiparesis, secondary to LSA compromise, occurred in 5 patients, all of whom had tumor volumes that extended medial to the LSAs. Gross-total or near-total resection was achieved more frequently in cases in which the insular glioma remained lateral to the LSAs (84 vs 54%). Insular gliomas with an MR imaging-defined tumor volume located lateral to the LSAs on stereotactic angiography displace the LSAs medially by expanding the insula, have well-demarcated tumor boundaries on MR images, and can be completely resected with minimal neurological morbidity. In contrast, insular tumors that appear to surround the LSAs do not displace these vessels medially, are poorly demarcated from normal brain parenchyma on MR images, and are associated with higher rates of neurological morbidity if aggressive resection is pursued. Preoperative identification of these anatomical growth patterns can be of value in planning resection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.