Abstract

Friction stir welding exploits its solid-state process behavior to join aluminum to steel, which differs in thermal and mechanical properties, and where a combination of these metallic alloys by fusion welding prompts a deleterious reaction as a result of the melting and resolidification phases. Recently, hybrid techniques have been employed in FSW for several materials and alloys, particularly for steel–steel joining. These methods are generally aimed to pre-heat the steel plate materials. This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between aluminum and steel, and (3) The welding process using stirring friction is simulated. The simulations intended to predict the temperature, which is used for the preheating and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength are carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed, and offset), temperature, and tensile strength. The maximum tensile strength is 77% compared to the strength of the aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving a good quality of the welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in the welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call