Abstract

Vanadium pentoxide (V2O5) with various nanostructures has been investigated during the past decades. Notably, two-dimensional V2O5 nanosheets had attracted most attentions due to the large mass density. Here, the V2O5 nanosheets doped by MoO3 (MoxV2-xO5+y) have been synthesized by sol-gel method combined with freezing–drying process. The structures and morphology of MoxV2-xO5+y were characterized by XRD, FTIR, TEM, and FESEM analysis. The MoxV2-xO5+y show a two-dimensional layered structure and the XRD can be indexed to an orthorhombic V2O5 phase. Meanwhile, the doping of MoO3 was confirmed by the XPS and TEM analysis. The electrochemical behaviors of the nanocomposites were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge test. As a result, the interlayer spacing of the Mox V2-x O5+y nanosheets were inlarged by V2MoO8. The improvment of electrochemical properties was due to defects and the layer structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.