Abstract

Selective micro heat sintering (SMHS)-type 3D printing technology is a widely applied method in rapid prototyping, which uses an electric heating component to sinter non-metallic powder. It requires precise control of the heating component’s energy and its sintering time. Temperature is one of the key factors that affect the forming quality of fused-type 3D printing technology. Aiming at the nonlinear and time-delay characteristics of temperature control in fused-type 3D printing, a fuzzy control method based on variable universe fuzzy control was studied. This fuzzy control method adopts a set of nonlinear expansion-contraction factors to make the variable universes change with the adaptive error, which can help acquire adaptive temperature adjustment in the rapid prototyping process control. The results of the simulation and experiment showed that the controlled temperature response was faster, the overshoot was smaller, and the stability was better compared to the conventional fuzzy proportion integration differentiation (PID) algorithm after the temperature reached the target temperature. The printed results indicated that the universe fuzzy PID control can effectively improve the accuracy of the workpiece shapes and that the density distribution of the workpiece is increased, which can help improve the forming quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call