Abstract

This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

Highlights

  • Scaffolds with bimimetics have been developed for tissue engineering, based on the sciences and engineering of biomaterials and nano/microstructures of defect tissues

  • Defect sizes, extracellular matrix (ECM) domains, biological molecules and ECM structures are typical examples of major components and properties of defect tissues, which require tissue regeneration. 3D bioprinting among many technologies in tissue engineering has been applied to fabrications of scaffolds based on understanding of tissue morphologies and physicochemical properties in nano/micro levels, even though 3D bioprinting has at current stages many huddles to be overcome to its clinical applications

  • Combination of 3D bioprinting and micro/nano-technology has been utilized in tissue engineering area, being considered as a unique technology to overcome the issues of fabrications of biomimetic scaffolds for complex tissues

Read more

Summary

Introduction

Scaffolds with bimimetics have been developed for tissue engineering, based on the sciences and engineering of biomaterials and nano/microstructures of defect tissues. 3D bioprinting among many technologies in tissue engineering has been applied to fabrications of scaffolds based on understanding of tissue morphologies and physicochemical properties in nano/micro levels, even though 3D bioprinting has at current stages many huddles to be overcome to its clinical applications.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.