Abstract

ABSTRACTMagnesium and its alloys are fascinating candidates for biodegradable implants due to their suitable mechanical properties, biodegradability and biocompatibility. However, the rapid corrosion rate, generation of a large amount of hydrogen gas and increase in local pH of the body fluid limit their potential biomedical applications. Various techniques, including alloying, mechanical processing and surface treatment, have been used to reduce the corrosion rate of materials. Surface treatment is one of the widely used techniques to improve the corrosion resistance of the Mg alloys. Compared to other surface modification processes, micro-arc oxidation can provide good adherent, hard, scratch-resistant, wear-resistant, and corrosion-resistant coatings on magnesium alloys. This article mainly reviews the influence of key relatively process parameters, such as electrolytic composition and presence of additives. Normally, electrolytic system and additives can improve the corrosion behaviour of magnesium alloys using appropriate concentration. The future prospects are summarised as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.